Mesoscale modeling of dynamic compressive behavior of microcapsule-based self-healing concrete under impact loading

Author:

Zhou Xiaoqing1ORCID,Lu Qianmei1,Tang Jiafan1,Wang Xianfeng1ORCID

Affiliation:

1. Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China

Abstract

Microcapsule-based self-healing concrete (MSC) has been widely studied, with a focus on static behavior and self-healing effectiveness. However, the dynamic mechanical properties of MSC have rarely been studied. This study presents a mesoscale numerical investigation of the dynamic compressive behavior of MSC under impact loading. In mesoscale, MSC is regarded as a four-phase composite material mainly composed of coarse aggregates, interface transition zones, cement mortar, and microcapsules. A pseudo 3D numerical model is constructed by combining a slice of a detailed mesoscale model with a homogenous 3D model. The mesoscale MSC slice models with different mass fractions of microcapsules (0%, 2%, 5%, and 8%) are constructed. Different coarse aggregate shapes (i.e., circles, ellipses, and polygons) are considered. The uniaxial dynamic compressive behaviors of MSC materials under loads of different strain rates are numerically simulated and compared with those from split Hopkinson pressure bar tests previously done by the authors. The comparison results show that the present mesoscale model can accurately predict the compressive strength and failure mode of MSC. The effects of the microcapsules ratio and strain rate on the dynamic strength are studied. Results show that the MSC compressive strength decreases with the increase in microcapsules and increases with the increase in strain rate. The dynamic increase factor (DIF) of the specimen is jointly contributed by the material DIF, inertial constraints, and heterogeneity. Different aggregate shapes have little effect on the simulation results of MSC behavior. The obtained dynamic mechanical properties of MSC may assist in designing MSC to resist collisions or explosions.

Funder

the National Key Research and Development Program of China.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3