Safety-state evaluation model based on structural entropy weight–matter element extension method for ancient timber architecture

Author:

Huan Junhong12ORCID,Ma Donghui12,Wang Wei12,Guo Xiaodong12,Wang Ziyi12,Wu Linchao12

Affiliation:

1. Institute of Earthquake Engineering, Beijing University of Technology, Beijing, China

2. Key Scientific Research Base of Safety Assessment and Disaster Mitigation for Traditional Timber Structure, State Administration for Cultural Heritage, Beijing, China

Abstract

This article investigates various factors that may influence the safety state of ancient timber architecture, to improve the accuracy of safety-state evaluation results for ancient timber architecture. During the process, a safety-state evaluation system for ancient timber architecture is developed. This safety-state evaluation system includes five parts: foundation, plinth, timber frame, enclosing wall, and roof. Based on the system, a safety-assessment model for ancient timber architecture based on structural entropy weight–matter element extension model is also introduced. In this model, the structural entropy weight method is applied to calculating the weight of each index and takes the influence of subjective and objective weights into consideration comprehensively. This model has the following three detailed steps. First, correlation function and correlation degree of extension set are used to quantify the relationship between the evaluation indexes of the components, joints, and evaluation interval of each safety state. Second, the safety states of units are determined according to the distribution of safety state of the components. Third, the safety degree of the entire structure is determined via the minimum safety state of units. This study also uses the Niaoqiangsanchu in Forbidden City as a study case and found that the evaluation results are consistent with the results of the practical damage survey and the actual situation of the architecture. The model thus minimizes the uncertainty of qualitative and quantitative factors in the process of evaluating the safety degree of ancient timber architecture, to finally obtain the objective evaluation results.

Funder

National Natural Science Foundation of China

Beijing Municipal Commission of Education

National Key R&D Program of China

Research Project on Major Policy Theory and Practice of China Earthquake Administration

Key Project of Earthquake Engineering and Engineering Vibration Key Laboratory of China Earthquake Administration

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3