Construction cost prediction system based on Random Forest optimized by the Bird Swarm Algorithm

Author:

Zheng Zhishan1,Zhou Lin2,Wu Han3,Zhou Lihong4

Affiliation:

1. School of Big data and Computer, Jiangxi University of Engineering, Xinyu 338000, China

2. School of Civil Engineering, Jiangxi University of Engineering, Xinyu 338000, China

3. School of Infrastructure Engineering, Nanchang University, Nanchang 330047, China

4. School of Architecture and Environmental Engineering, Nanchang Institute of Science and Technology, Nanchang 330047, China

Abstract

<abstract> <p>Predicting construction costs often involves disadvantages, such as low prediction accuracy, poor promotion value and unfavorable efficiency, owing to the complex composition of construction projects, a large number of personnel, long working periods and high levels of uncertainty. To address these concerns, a prediction index system and a prediction model were developed. First, the factors influencing construction cost were first identified, a prediction index system including 14 secondary indexes was constructed and the methods of obtaining data were presented elaborately. A prediction model based on the Random Forest (RF) algorithm was then constructed. Bird Swarm Algorithm (BSA) was used to optimize RF parameters and thereby avoid the effect of the random selection of RF parameters on prediction accuracy. Finally, the engineering data of a construction company in Xinyu, China were selected as a case study. The case study showed that the maximum relative error of the proposed model was only 1.24%, which met the requirements of engineering practice. For the selected cases, the minimum prediction index system that met the requirement of prediction accuracy included 11 secondary indexes. Compared with classical metaheuristic optimization algorithms (Particle Swarm Optimization, Genetic Algorithms, Tabu Search, Simulated Annealing, Ant Colony Optimization, Differential Evolution and Artificial Fish School), BSA could more quickly determine the optimal combination of calculation parameters, on average. Compared with the classical and latest forecasting methods (Back Propagation Neural Network, Support Vector Machines, Stacked Auto-Encoders and Extreme Learning Machine), the proposed model exhibited higher forecasting accuracy and efficiency. The prediction model proposed in this study could better support the prediction of construction cost, and the prediction results provided a basis for optimizing the cost management of construction projects.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Computational Mathematics,General Agricultural and Biological Sciences,Modeling and Simulation,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cost prediction for water reuse equipment using interpretable machine learning models;Journal of Water Process Engineering;2024-06

2. Wings & Warnings: Advanced Illness Prediction in Birds Through CNN and Random Forest Integration;2024 IEEE 9th International Conference for Convergence in Technology (I2CT);2024-04-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3