Affiliation:
1. State Key Laboratory of Green Building in Western China, Xi’an University of Architecture and Technology, Xi’an, China
2. CCCC Highway Consultants Co., Ltd, Xi’an, China
Abstract
Three 1/10-scale bridge pier specimens were tested under quasi-static test. The specimens included two precast specimens (PC1 and PC2) and one cast-in-place reference specimen. The two precast bridge pier specimens were connected with prestressing threaded steel bar and steel flange at the connection between precast pier column and the foundation, and non-socket assembly scheme and socket assembly scheme are adopted, respectively. They were tested to verify the seismic performance of prefabricated piers connected by prestressed threaded steel bars and steel flanges and study which assembly scheme is better for non-socketed and socketed piers. The results show that the prefabricated pier with the combination of the prestressed threaded steel bars and steel flange has higher cracking load and smaller residual displacement, which indicates that it has good service performance and good self-resetting ability. Compared with the non-socket assembly scheme, the socket assembly scheme is superior due to its higher ductility, higher overall initial stiffness, and higher energy dissipation capacity. Therefore, the prefabricated assembled pier with the socket connection scheme of the combination of the prestressed threaded steel bars and steel flange has good service performance and seismic performance. After that, a hysteretic model for the precast assembled columns was proposed, which has a good agreement with the test results.
Funder
Education Department Project of Shaanxi Provincial Government
National Natural Science Foundation of China
Subject
Building and Construction,Civil and Structural Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献