Author:
Yang Dahai,Wang Zhitian,Zhang Yi,Pan Wuzhi,Wang Jianan,Shi Jun
Abstract
The seismic performance of prefabricated hollow circular piers with socket and slot connection was evaluated through model tests and numerical simulations. The quasi-static tests with cyclic lateral load and constant axial load were conducted on three large pier specimens. The piers of these three specimens were cast by polyvinyl alcohol (PVA) fiber concrete, and the piers were connected to the cover beams by slotted connections and to the bearing platform by socketed connections. The seismic performance of the specimens was investigated in terms of failure modes, hysteresis curves, skeleton curves, stiffness degradation, energy dissipation, and residual deformation. The test results showed that, within a certain range, increasing the axial compression ratio is able to enhance the shear bearing capacity of prefabricated hollow piers and increase the cumulative energy dissipation, but it is not beneficial to the ductility. In addition, the increase in the shear span ratio significantly reduces the shear bearing capacity of piers and increases the residual deformation of the specimen, but the ductility is significantly improved. In addition, the numerical model of the prefabricated hollow pier was established by ABAQUS. The result of the numerical simulation was consistent and similar to the experimental result in terms of damage modes and load–displacement curves. Finally, the parametric analysis of the prefabricated hollow piers was carried out on the basis of the numerical model.
Subject
Building and Construction,Civil and Structural Engineering,Architecture
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献