Investigation on three-directional dynamic interaction between a heavy-duty vehicle and a curved bridge

Author:

Li Shaohua1,Ren Jianying1

Affiliation:

1. School of Mechanical Engineering, Shijiazhuang Tiedao University, Shijiazhuang, China

Abstract

Considering the nonlinear property of suspension damping and tire stiffness, a full-vehicle model is built for a heavy-duty truck. A modified preview driver model with nonlinear time delay is inserted into the vehicle model to compute the suitable steering angle of the front wheel and to make the vehicle follow the required route. Next, the finite element model of a five-span continuous curved highway bridge is established, and the bridge’s inherent frequencies and modes are obtained. The curved bridge and the vehicle are coupled by three-directional tire forces, and a three-directional driver–vehicle–bridge interaction model is presented. The presented vehicle model and bridge model are verified by comparing with the published works. The dynamic impact factors of vertical, lateral, and torsional displacements of the bridge are calculated when a vehicle is traversing through the bridge, and the impact factors’ distributions along the bridge are analyzed. The effects of vehicle driving conditions on impact factors are also researched. It is found that the impact factor calculated from the present specification for a straight bridge is smaller than that from the three-directional driver–vehicle–bridge interaction model, and the vertical and torsional impact effects at the third span midpoint are greater than the lateral impact effect.

Publisher

SAGE Publications

Subject

Building and Construction,Civil and Structural Engineering

Reference30 articles.

1. A three-dimensional dynamic analysis scheme for the interaction between trains and curved railway bridges

2. GB/T 7031-2005/ISO 8608:1995 (2005) Mechanical vibration-road surface profiles-reporting of measured data, Beijing.

3. Curved bridge response to a moving vehicle

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3