Affiliation:
1. School of Dietetics and Human Nutrition, McGill University, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
2. Department of Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
Abstract
Conjugated linoleic acid (CLA) elevates body ash in healthy animals. The objective of the present study was to determine if single or mixed CLA isomers improve bone mass in an obese and hyperinsulinemic state. Male (n = 120) lean and obese fa/fa Zucker rats (age, 6 weeks) were randomized to 8 weeks on a control diet or to 0.4% (w/w) cis-9, trans-11 CLA (Group 1); 0.4% (w/w) trans-10, cis-12 CLA (Group 2); 0.4% (w/w) cis-9, trans-11 CLA and 0.4% (w/w) trans-10, cis-12 CLA (Group 3); 0.4% (w/w) cis-9, trans-11 CLA, 0.4% (w/w) trans-10, cis-12 CLA, and traces of other CLA isomers (Group 4); and 0.4% (w/w) cis-9, trans-11 CLA, 0.4% (w/w) trans-10, cis-12 CLA, and 0.3% (w/w) other CLA isomers (Group 5). Bone area (BA), bone mineral content (BMC), and bone mineral density (BMD) of the whole body, spine, and femur were measured at baseline (6 weeks) and at 14 weeks of age. Effects of genotype, diet, and genotype × diet interactions were assessed using factorial analysis of variance. At 6 and 14 weeks, whole-body BA and BMC were lower in lean rats compared with fa/fa rats. Similarly, at 14 weeks, fa/fa rats had a higher spine and femur BMD despite a lower femur weight. The fa/fa rats in Groups 4 and 5 had higher adjusted whole-body BMC compared with Group 3, but not with Group 1, Group 2, or the control. In lean rats, Group 3 had a greater adjusted whole-body BMC than Groups 1 and 2, but not Group 4, Group 5, or the control. Thus, commercially available CLA mixtures and single CLA isomers do not affect bone mass in a hyperinsulinemic, obese state.
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献