Evaluation of Sphinganine and Sphingosine as Human Breast Cancer Chemotherapeutic and Chemopreventive Agents

Author:

Ahn Eun Hyun1,Chang Chia-Cheng23,Schroeder Joseph J.1

Affiliation:

1. Departments of Food Science and Human Nutrition

2. †Pediatrics and Human Development

3. ‡National Food Safety and Toxicology Center, Michigan State University, East Lansing, Michigan 48824

Abstract

No comparative study of the effects of sphingolipid metabolites on proliferation and differentiation in normal human breast epithelial cells versus stem cells and tumorigenic cells has been reported. The purpose of this study was to evaluate the chemotherapeutic and chemopreventive potential of sphingoid bases (sphingosine and sphinganine) using a novel cell culture system of normal human breast epithelial cells (HBEC) developed from breast tissues of healthy women obtained during reduction mammoplasty (Type I HBEC with stem cell characteristics and Type II HBEC with basal epithelial cell phenotypes) and transformed tumorigenic Type I HBEC. The results show that sphinganine inhibited the growth and induced apoptosis of transformed tumorigenic Type I HBEC more potently than sphingosine (IC50 for sphinganine 4 μM; sphingosine 6.4 μM). Both sphinganine and sphingosine at high concentrations (8–10 μM) arrested the cell cycle at G2/M. Sphinganine inhibited the growth and caused death of Type I HBEC more strongly than sphingosine. In comparison, Type II HBEC (normal differentiated cells) were less sensitive to the growth-inhibitory effects of sphingoid bases than Type I HBEC (stem cells) or transformed tumorigenic Type I HBEC, suggesting that sphingoid bases may serve as chemotherapeutic agents. At concentrations (0.05, 0.1, and 0.5 μM) that are below the growth-inhibitory range, sphingoid bases induced differentiation of Type I HBEC to Type II HBEC, as detected morphologically and via expression of a tumor suppressor protein, maspin, which is a marker of Type II HBEC. Thus, sphingoid bases may function as chemotherapeutic as well as chemopreventive agents by preferentially inhibiting cancer cells and eliminating stem cells from which most breast cancer cells arise.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3