Hepatic HMG-CoA Reductase Expression and Resistance to Dietary Cholesterol

Author:

Ness Gene C.1,Gertz Karen R.1

Affiliation:

1. Department of Biochemistry and Molecular Biology, College of Medicine, University of South Florida, Tampa, Florida 33612

Abstract

The premise that the intrinsic level of expression of hepatic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase determines the relative sensitivity to the serum cholesterol raising action of dietary cholesterol was examined in 9 strains of rat. For further comparison purposes, hamsters were also examined. The basal expression of hepatic HMG-CoA reductase, extent of feedback regulation by cholesterol, and changes in serum cholesterol levels and the hepatic low-density lipoprotein (LDL) receptor in response to cholesterol challenge were determined in these animals. The Sprague-Dawley, Wistar-Furth, Spontaneously Hypertensive, Lewis, and Wistar-Kyoto rats were all very resistant to dietary cholesterol and exhibited hepatic HMG-CoA reductase activities above 150 pmol/min-1 / mg-1. The Buffalo, Brown Norway, and Copenhagen 2331 rats had hepatic HMG-CoA reductase activities below 90 pmol / min-1 / mg-1 and had increases in serum cholesterol levels ranging from 12 to 33 mg/dl when given a 4-day, 1% cholesterol challenge. The extent of feedback regulation was reduced to only 3-fold in the Fisher 344 and Brown Norway rats that exhibited significant increases in serum cholesterol levels when given a cholesterol challenge. The Golden Syrian hamsters exhibited the largest increase (197 mg/dl) in serum cholesterol levels in response to dietary cholesterol and the lowest basal expression of hepatic HMG-CoA reductase (3.3 pmol / min-1 / mg-1). Hepatic LDL receptor levels were not significantly decreased by dietary cholesterol in any of the animals. The data from these inbred rats and the hamsters strongly support the conclusion that the animals expressing the highest levels of hepatic HMG-CoA reductase are the most resistant to the serum cholesterol raising action of dietary cholesterol.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3