[18F]Atorvastatin: synthesis of a potential molecular imaging tool for the assessment of statin-related mechanisms of action

Author:

Clemente Gonçalo S.,Rickmeier Jens,Antunes Inês F.,Zarganes-Tzitzikas Tryfon,Dömling Alexander,Ritter Tobias,Elsinga Philip H.

Abstract

Abstract Background Statins are lipid-lowering agents that inhibit cholesterol synthesis and are clinically used in the primary and secondary prevention of cardiovascular diseases. However, a considerable group of patients does not respond to statin treatment, and the reason for this is still not completely understood. [18F]Atorvastatin, the 18F-labeled version of one of the most widely prescribed statins, may be a useful tool for statin-related research. Results [18F]Atorvastatin was synthesized via an optimized ruthenium-mediated late-stage 18F-deoxyfluorination. The defluoro-hydroxy precursor was produced via Paal-Knorr pyrrole synthesis and was followed by coordination of the phenol to a ruthenium complex, affording the labeling precursor in approximately 10% overall yield. Optimization and automation of the labeling procedure reliably yielded an injectable solution of [18F]atorvastatin in 19% ± 6% (d.c.) with a molar activity of 65 ± 32 GBq·μmol−1. Incubation of [18F]atorvastatin in human serum did not lead to decomposition. Furthermore, we have shown the ability of [18F]atorvastatin to cross the hepatic cell membrane to the cytosolic and microsomal fractions where HMG-CoA reductase is known to be highly expressed. Blocking assays using rat liver sections confirmed the specific binding to HMG-CoA reductase. Autoradiography on rat aorta stimulated to develop atherosclerotic plaques revealed that [18F]atorvastatin significantly accumulates in this tissue when compared to the healthy model. Conclusions The improved ruthenium-mediated 18F-deoxyfluorination procedure overcomes previous hurdles such as the addition of salt additives, the drying steps, or the use of different solvent mixtures at different phases of the process, which increases its practical use, and may allow faster translation to clinical settings. Based on tissue uptake evaluations, [18F]atorvastatin showed the potential to be used as a tool for the understanding of the mechanism of action of statins. Further knowledge of the in vivo biodistribution of [18F]atorvastatin may help to better understand the origin of off-target effects and potentially allow to distinguish between statin-resistant and non-resistant patients.

Publisher

Springer Science and Business Media LLC

Subject

Radiology Nuclear Medicine and imaging

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3