Premedication with fentanyl-midazolam improves sevoflurane anesthesia for surgical intervention in laboratory mice

Author:

Lipiski Miriam1,Arras Margarete12,Jirkof Paulin12,Cesarovic Nikola1

Affiliation:

1. Division of Surgical Research, University Hospital Zurich, University of Zurich, CH-8091 Zurich, Switzerland

2. Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland

Abstract

Balanced anesthesia allows for a reduced dosage of each component, while inducing general anesthesia of sufficient depth with potentially fewer side effects. Here, we compare two anesthetic protocols combining sevoflurane anesthesia with pre-medication (ketamine [K] or fentanyl-midazolam [FM]) to a sevoflurane monoanesthesia (S) concerning their ability to provide reliable anesthesia suitable for moderate surgery in laboratory mice. Twenty-one female C57BL/6J mice assigned randomly to one of three protocols underwent a 50-min anesthesia and a sham embryo transfer. Heart rate and core body temperature were continuously recorded by telemetry intra-operatively and for three days pre- and three days post-surgery. Intra-operative respiratory rate was determined by counting thorax movements. Body weight, food, and water intake were measured daily for three days pre- and three days post-surgery. The heart rate in the KS group remained at baseline level throughout the 50-min of anesthesia and surgery. FMS caused a lower heart rate and S alone caused a higher heart rate compared to baseline values. Intra-operative body temperature was at baseline levels in all groups. A decreased respiratory rate was observed in all groups compared to baseline values obtained from resting mice of the same strain, sex and age-distribution. Surgical stimuli induced no significant changes in heart rate and respiratory rate in the KS or FMS group but significant respiratory alteration in the S group compared to baseline values obtained 10 s before applying the stimulus. Post-operative heart rate was above baseline values in all groups; with a significant deviation in the S group. There were no changes in body weight, food, and water intake. In summary, FMS was superior to KS and S for moderate surgery in laboratory mice resulting in less inter-individual variability in response to painful stimuli. Fentanyl and midazolam reduced the depressant effect of sevoflurane on the respiratory rate and the negative post-anesthetic effects on the heart rate. Impact statement With approximately 65 million animals used per year mice are still the most prevalent laboratory mammal species worldwide. In course of biomedical research projects approximately 40% of mice will undergo one or more short or long-term anesthesia. Sufficient anesthetic depth, cardiovascular stability, adequate analgesia, and short recovery times are essential requirements of anesthetic protocols to meet animal welfare. Anesthesia in mice and rats are only to be performed by personnel with appropriate basic training and experience. However, more and more adapted and advanced anesthetic protocols, required to answer very specific scientific questions, often exceed the skills acquired through basic training and present a major challenge to researchers. It is therefore of great importance to further develop and evaluate safe and reliable anesthetic protocols as presented in this study to provide new perspectives on this challenging problem.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ultrafine and Microinvasive Temperature Probe for Real‐Time Monitoring Core Body Temperature;Advanced Sensor Research;2023-12-26

2. Anesthesia and analgesia in laboratory rodents;Anesthesia and Analgesia in Laboratory Animals;2023

3. Use of Ketamine or Xylazine to Provide Balanced Anesthesia with Isoflurane in C57BL/6J Mice;Journal of the American Association for Laboratory Animal Science;2022-09-01

4. Mouse Anesthesia: The Art and Science;ILAR Journal;2021-06-28

5. Drug class effects on respiratory mechanics in animal models: access and applications;Experimental Biology and Medicine;2021-02-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3