Affiliation:
1. Department of Pharmacology, Institute of Biomedical Science, University of Sao Paulo (USP) Sao Paulo, SP 05508-000, Brazil
2. Biomedical Engineering Laboratory – University of Sao Paulo (USP) Sao Paulo, SP 05508-010, Brazil
Abstract
Assessment of respiratory mechanics extends from basic research and animal modeling to clinical applications in humans. However, to employ the applications in human models, it is desirable and sometimes mandatory to study non-human animals first. To acquire further precise and controlled signals and parameters, the animals studied must be further distant from their spontaneous ventilation. The majority of respiratory mechanics studies use positive pressure ventilation to model the respiratory system. In this scenario, a few drug categories become relevant: anesthetics, muscle blockers, bronchoconstrictors, and bronchodilators. Hence, the main objective of this study is to briefly review and discuss each drug category, and the impact of a drug on the assessment of respiratory mechanics. Before and during the positive pressure ventilation, the experimental animal must be appropriately sedated and anesthetized. The sedation will lower the pain and distress of the studied animal and the plane of anesthesia will prevent the pain. With those drugs, a more controlled procedure is carried out; further, because many anesthetics depress the respiratory system activity, a minimum interference of the animal’s respiration efforts are achieved. The latter phenomenon is related to muscle blockers, which aim to minimize respiratory artifacts that may interfere with forced oscillation techniques. Generally, the respiratory mechanics are studied under appropriate anesthesia and muscle blockage. The application of bronchoconstrictors is prevalent in respiratory mechanics studies. To verify the differences among studied groups, it is often necessary to challenge the respiratory system, for example, by pharmacologically inducing bronchoconstriction. However, the selected bronchoconstrictor, doses, and administration can affect the evaluation of respiratory mechanics. Although not prevalent, studies have applied bronchodilators to return (airway resistance) to the basal state after bronchoconstriction. The drug categories can influence the mathematical modeling of the respiratory system, systemic conditions, and respiratory mechanics outcomes.
Funder
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献