Hemorrhage simulated by lower body negative pressure provokes an oxidative stress response in healthy young adults

Author:

Park Flora S1,Kay Victoria L1,Sprick Justin D12,Rosenberg Alexander J1,Anderson Garen K1,Mallet Robert T1ORCID,Rickards Caroline A1ORCID

Affiliation:

1. Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort, TX 76107, USA

2. Division of Renal Medicine, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA

Abstract

Hemorrhage is a leading cause of potentially preventable death in both civilian and military trauma settings. Lower body negative pressure (LBNP) is a validated, non-invasive, and reproducible approach to simulate hemorrhage by inducing central hypovolemia in healthy conscious humans. The oxidative stress response to simulated hemorrhage via LBNP has not been quantified. We hypothesized that systemic markers of oxidative stress would increase with application of maximal, pre-syncopal limited LBNP. Fifteen healthy human subjects (11 M/4 F; age 27 ± 1 y) were recruited for a single LBNP experiment to presyncope (chamber pressure was progressively reduced every 5-min in a stepwise manner). Heart rate was assessed via ECG, arterial pressure and stroke volume (SV) were measured continuously via finger photoplethysmography, muscle oxygen saturation (SmO2) was measured via near-infrared spectroscopy, and venous blood samples were collected at baseline and presyncope. Plasma samples were analyzed for F2-isoprostanes (F2-IsoP), a global marker of oxidative stress. The magnitude of central hypovolemia, indexed by the maximal decrease (%Δ) in SV, ranged from 27 to 74% (53.5 ± 3.9%; P < 0.001), and mean arterial pressure (MAP) decreased by 12.6 ± 2.6% ( P < 0.001 vs. pre-LBNP baseline). F2-IsoP increased by 28.5 ± 11.6% ( P = 0.05) from baseline (24 ± 2 pg/mL) to presyncope (29 ± 3 pg/mL). The increase in F2-IsoP was not associated with %Δ SV ( r = 0.21, P = 0.46), %Δ MAP ( r = 0.05, P = 0.86), %Δ SmO2 ( r = 0.05, P = 0.90), or the maximum level of LBNP attained ( r = 0.35, P = 0.20). Simulated hemorrhage induced by LBNP to presyncope elicited an increase in oxidative stress, but this response was not associated with the magnitude of central hypovolemia, hypotension, or the decrease in peripheral muscle tissue oxygen saturation. These findings have important implications for the study of hemorrhage using LBNP, and future investigations of interventions targeting oxidative stress. Impact statement We characterize the systemic oxidative stress response in young, healthy human subjects with exposure to simulated hemorrhage via application of lower body negative pressure (LBNP). Prior work has demonstrated that LBNP and actual blood loss evoke similar hemodynamic and immune responses (i.e. white blood cell count), but it is unknown whether LBNP elicits oxidative stress resembling that produced by blood loss. We show that LBNP induces a 29% increase in F2-isoprostanes, a systemic marker of oxidative stress. The findings of this investigation may have important implications for the study of hemorrhage using LBNP, including future assessments of targeted interventions that may reduce oxidative stress, such as novel fluid resuscitation approaches.

Funder

William and Ella Owens Medical Research Foundation Grant

US Army Medical and Materiel Command

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3