Prediction of Occult Hemorrhage in the Lower Body Negative Pressure Model: Initial Validation of Machine Learning Approaches

Author:

Rashedi Navid1ORCID,Sun Yifei1,Vaze Vikrant1,Shah Parikshit2,Halter Ryan1,Elliott Jonathan T3,Paradis Norman A3

Affiliation:

1. Department of Engineering Sciences, Thayer School of Engineering, Dartmouth College , Hanover, NH 03755, USA

2. Department of Electrical Engineering and Computer Science, Insight Research , Emerald Hills, CA 94065, USA

3. Department of Emergency Medicine, Geisel School of Medicine, Dartmouth College , Hanover, NH 03755, USA

Abstract

ABSTRACT Introduction Detection of occult hemorrhage (OH) before progression to clinically apparent changes in vital signs remains an important clinical problem in managing trauma patients. The resource-intensiveness associated with continuous clinical patient monitoring and rescue from frank shock makes accurate early detection and prediction with noninvasive measurement technology a desirable innovation. Despite significant efforts directed toward the development of innovative noninvasive diagnostics, the implementation and performance of the newest bedside technologies remain inadequate. This poor performance may reflect the limitations of univariate systems based on one sensor in one anatomic location. It is possible that when signals are measured with multiple modalities in multiple locations, the resulting multivariate anatomic and temporal patterns of measured signals may provide additional discriminative power over single technology univariate measurements. We evaluated the potential superiority of multivariate methods over univariate methods. Additionally, we utilized machine learning–based models to compare the performance of noninvasive-only to noninvasive-plus-invasive measurements in predicting the onset of OH. Materials and Methods We applied machine learning methods to preexisting datasets derived using the lower body negative pressure human model of simulated hemorrhage. Employing multivariate measured physiological signals, we investigated the extent to which machine learning methods can effectively predict the onset of OH. In particular, we applied 2 ensemble learning methods, namely, random forest and gradient boosting. Results Analysis of precision, recall, and area under the receiver operating characteristic curve showed a superior performance of multivariate approach to that of the univariate ones. In addition, when using both invasive and noninvasive features, random forest classifier had a recall 95% confidence interval (CI) of 0.81 to 0.86 with a precision 95% CI of 0.65 to 0.72. Interestingly, when only noninvasive features were employed, the results worsened only slightly to a recall 95% CI of 0.80 to 0.85 and a precision 95% CI of 0.61 to 0.73. Conclusions Multivariate ensemble machine learning–based approaches for the prediction of hemodynamic instability appear to hold promise for the development of effective solutions. In the lower body negative pressure multivariate hemorrhage model, predictions based only on noninvasive measurements performed comparably to those using both invasive and noninvasive measurements.

Funder

Office of the Secretary of Defense

Publisher

Oxford University Press (OUP)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stiffness-Tunable Functional Liquid Metal Sponge;2024 IEEE International Conference on Real-time Computing and Robotics (RCAR);2024-06-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3