Capsazepine concentration dependently inhibits currents in HEK 293 cells mediated by human hyperpolarization-activated cyclic nucleotide-gated 2 and 4 channels

Author:

Zuo Guang-Feng1,Li Ming-Hui1,Zhang Jun-Xia1,Li Bing1,Wang Zhi-Mei1,Wang Qiang2,Xiao Hang3,Chen Shao-Liang1

Affiliation:

1. Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, China

2. Department of Preventive Medicine, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, 212013, China

3. Department of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 210029, China

Abstract

Recent studies indicate that blockade of currents (Ih) mediated by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels (particularly HCN1) may partly account for the antinociceptive effects of capsazepine (CPZ). Unfortunately, determining whether capsazepine is a selective HCN channel blocker and determining its adverse effects when it is used for the treatment of neuropathic pain, have been thus far understudied. In this study, we aimed to elucidate the effects of capsazepine on human HCN2 (hHCN2) and HCN4 (hHCN4) channels in HEK293 cells. The vectors that expressed hHCN2 and hHCN4 cDNA were constructed and transfected into HEK293 cells. Enhanced green fluorescent protein (EGFP) fluorescence and the reverse transcription polymerase chain reaction (RT-PCR) were used to confirm the successful transfection of the vectors. After G418 (neomycin) screening, cell lines that expressed hHCN2 and hHCN4 were obtained. The whole-cell voltage-clamp technique was used to determine the currents from hHCN2 and hHCN4 channels, which were perfused with five concentrations (0.1 µM, 1 µM, 5 µM, 10 µM and 50 µM) of capsazepine. The results showed that capsazepine at the range from 0.1 to 50 µM markedly inhibited hHCN2 and hHCN4 currents in a concentration-dependent manner, with most inhibition achieved at a concentration of 10 µM of capsazepine. When compared with the control group, a V0.5 for the hHCN2 and hHCN4 channel showed that 10 µM capsazepine significantly shifted the membrane potential towards hyperpolarization. The present results indicate that capsazepine is not a selective HCN1 channel blocker and that it may have adverse effects when used to treat neuropathic pain.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3