Neutrophil elastase inhibitor reduces ventilation-induced lung injury via nuclear factor-κB and NF-κB repressing factor in mice

Author:

Li Li-Fu12,Lai Yi-Ting23,Chang Chih-Hao1,Lin Meng-Chih4,Liu Yung-Yang56,Kao Kuo-Chin12,Tsai Ying-Huang12

Affiliation:

1. Department of Medicine, Division of Pulmonary and Critical Care Medicine, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333, Taiwan

2. Department of Respiratory Therapy, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan

3. Graduate Institute of Clinical Medical Sciences and Department of Respiratory Care, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan

4. Division of Pulmonary and Critical Care Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan

5. Chest Department, Taipei Veterans General Hospital, Taipei 112, Taiwan

6. Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan

Abstract

Mechanical ventilation used in patients with acute lung injury can damage pulmonary epithelial cells through production of inflammatory cytokines, oxygen radicals, and neutrophil infiltration, termed ventilator-induced lung injury. Neutrophil elastase, nuclear factor-κB (NF-κB), and NF-κB repressing factor (NRF) have previously been shown to participate in the regulation of macrophage inflammatory protein-2 (MIP-2) during airway inflammation. However, the mechanisms regulating interactions among mechanical ventilation, neutrophil influx, and NF-κB/NRF remain unclear. Thus, we hypothesized that neutrophil elastase inhibitor attenuated ventilation-induced neutrophil recruitment and MIP-2 production through inhibition of the NF-κB/NRF pathway. Male C57BL/6 mice were exposed to low-tidal-volume (6 mL/kg) or high-tidal-volume (30 mL/kg) mechanical ventilation using room air with or without 2 µg/g NF-κB inhibitor SN50 or 6 µg/g NRF short interfering RNA or 100 µg/g neutrophil elastase inhibitor administration. Nonventilated mice served as a control group. Evan blue dye, lung wet-to-dry weight ratio, free radicals, myeloperoxidase, histopathologic grading of lung tissue, inflammatory cytokines, Western blot of NF-κB and NRF, and gene expression of NRF were measured to establish the extent of lung injury. Neutrophil elastase inhibitor ameliorated high-tidal-volume ventilation-induced lung injury, neutrophil influx, production of MIP-2 and malondialdehyde, activation of NF-κB and NRF, apoptotic epithelial cell death, and disruption of bronchial microstructure in mice. Mechanical stretch-augmented acute lung injury was also attenuated through pharmacological inhibition of NF-κB activity by SN50 and NRF expression by NRF short interfering RNA. Our data suggest that neutrophil elastase inhibitor attenuates high-tidal-volume mechanical ventilation-induced neutrophil influx, oxidative stress, and production of MIP-2, at least partly, through inhibition of NF-κB/NRF pathway. Understanding the protective effects of neutrophil elastase inhibitor associated with the reduction of MIP-2 allow clarification of the pathophysiological mechanisms regulating severe lung inflammation and development of possible therapeutic strategies involved in acute lung injury.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3