Differential Expression of Na:K:2CI Cotransporter, Glucose Transporter 1, and Aquaporin 1 in Freshly Isolated and Cultured Bovine Corneal Tissues

Author:

Bildin Victor N.1,Iserovich Pavel2,Fischbarg Jorge23,Reinach Peter S.1

Affiliation:

1. Department of Biological Sciences, College of Optometry, State University of New York, New York, New York 10036

2. Departments of Ophthalmology, College of Physicians and Surgeons, Columbia University, New York, New York 10032

3. Department of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, New York, New York 10032

Abstract

Little is known about whether culturing corneal limiting layers causes changes in the expression of their membrane transporter proteins from those present in fresh tissues. Accordingly, we compared mRNA abundance of three well-described types of transporters: water channel aquaporin 1 (AQP1), glucose transporter (GLUT1), and Na:K:2CI cotransporter (NKCC), as well as NKCC protein levels in fresh bovine corneal epithelium and endothelium with those in their cultured counterparts. Abundance of mRNA encoding AQP1, GLUT1, and NKCC was quantified by a lysate nuclease protection assay. NKCC transcription was further characterized by Northern blotting. All data were normalized to cell DNA and protein contents. In the fresh epithelium, in all three cases mRNA levels were two to four times higher than in the endothelium. Expression of AQP1 and GLUT1 was 10 to 12 times higher than that of NKCC. After the third passage, the endothelial cell mRNA abundance in each case decreased 2- to 3-fold. Passage-dependent decreases were also observed in NKCC protein expression in the epithelial cells. In both corneal layers, there was a qualitative correlation between NKCC mRNA and protein levels. Both in fresh and cultured epithelial and endothelial cells, a shark NKCC1 DNA probe hybridized with mRNAs of two different lengths (about 5.0–5.5 and 7.0–7.5 kb). An anti-NKCC T4 monoclonal antibody recognized two major proteins with apparent molecular masses of 190 to 200 and 150 to 160 kDa. In summary, membrane transporter function in culture may not be always indicative of their role in fresh tissue since in cultured cells AQP1, GLUT1, and NKCC mRNA levels declined. Furthermore, in both epithelial and endothelial cells, there is expression of two different proteins and mRNAs that possibly encode for secretory (NKCC1) and absorptive (NKCC2) isoforms.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ion channels in dry eye disease;Indian Journal of Ophthalmology;2023-04

2. Bicarbonate activates glycolysis and lactate production in corneal endothelial cells by increased pHi;Experimental Eye Research;2020-10

3. Effect of Drugs and Nanoformulation on Ocular Cells in Various Disease States;Nanoformulations in Human Health;2020

4. Recent Advances in Topical Ocular Drug Delivery;Journal of Ocular Pharmacology and Therapeutics;2016-03

5. Characteristics of the low density corneal endothelial monolayer;Experimental Eye Research;2013-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3