Ion channels in dry eye disease

Author:

Ashok Nikhil1,Khamar Pooja2,D’Souza Sharon2,Gijs Marlies3,Ghosh Arkasubhra1,Sethu Swaminathan1,Shetty Rohit2

Affiliation:

1. GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnataka, India

2. Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore, Karnataka, India

3. Department of Ophthalmology, University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, The Netherlands

Abstract

Dry eye disease (DED) which affects millions of people worldwide is an ocular surface disease that is strongly associated with pain, discomfort, and visual disturbances. Altered tear film dynamics, hyperosmolarity, ocular surface inflammation, and neurosensory abnormalities are the key contributors to DED pathogenesis. The presence of discordance between signs and symptoms of DED in patients and refractoriness to current therapies in some patients underpin the need for studying additional contributors that can be modulated. The presence of electrolytes or ions including sodium, potassium, chloride, bicarbonate, calcium, and magnesium in the tear fluid and ocular surface cells contribute to ocular surface homeostasis. Ionic or electrolyte imbalance and osmotic imbalance have been observed in DED and feed-forward interaction between ionic imbalances and inflammation alter cellular processes in the ocular surface resulting in DED. Ionic balances in various cellular and intercellular compartments are maintained by dynamic transport via ion channel proteins present in cell membranes. Hence, alterations in the expression and/or activity of about 33 types of ion channels that belong to voltage-gated channels, ligand-gated channels, mechanosensitive ion channel, aquaporins, chloride ion channel, sodium–potassium–chloride pumps or cotransporters have been investigated in the context of ocular surface health and DED in animal and/or human subjects. An increase in the expression or activity of TRPA1, TRPV1, Nav1.8, KCNJ6, ASIC1, ASIC3, P2X, P2Y, and NMDA receptor have been implicated in DED pathogenesis, whereas an increase in the expression or activity of TRPM8, GABAA receptor, CFTR, and NKA have been associated with resolution of DED.

Publisher

Medknow

Subject

Ophthalmology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3