Bacteriophage Endolysins as a Novel Class of Antibacterial Agents

Author:

Borysowski Jan1,Weber-Dąbrowska Beata2,Górski Andrzej12

Affiliation:

1. Department of Clinical Immunology, Institute of Transplantology, The Medical University of Warsaw, Nowogrodzka 59, 02-006 Warsaw, Poland

2. Laboratory of Bacteriophages, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wroclaw, Poland

Abstract

Endolysins are double-stranded DNA bacteriophage-encoded peptidoglycan hydrolases produced in phage-infected bacterial cells toward the end of the lytic cycle. They reach the peptidoglycan through membrane lesions formed by holins and cleave it, thus, inducing lysis of the bacterial cell and enabling progeny virions to be released. Endolysins are also capable of degrading peptidoglycan when applied externally (as purified recombinant proteins) to the bacterial cell wall, which also results in a rapid lysis of the bacterial cell. The unique ability of endolysins to rapidly cleave peptidoglycan in a generally species-specific manner renders them promising potential antibacterial agents. Originally developed with a view to killing bacteria colonizing mucous membranes (with the first report published in 2001), endolysins also hold promise for the treatment of systemic infections. As potential antibacterials, endolysins possess several important features, for instance, a novel mode of action, a narrow antibacterial spectrum, activity against bacteria regardless of their antibiotic sensitivity, and a low probability of developing resistance. However, there is only one report directly comparing the activity of an endolysin with that of an antibiotic, and no general conclusions can be drawn regarding whether lysins are more effective than traditional antibiotics. The results of the first preclinical studies indicate that the most apparent potential problems associated with endolysin therapy (e.g., their immunogenicity, the release of proinflammatory components during bacteriolysis, or the development of resistance), in fact, may not seriously hinder their use. However, all data regarding the safety and therapeutic effectiveness of endolysins obtained from preclinical studies must be ultimately verified by clinical trials. This review discusses the prophylactic and therapeutic applications of endolysins, especially with respect to their potential use in human medicine. Additionally, we outline current knowledge regarding the structure and natural function of the enzymes in phage biology, including the most recent findings.

Publisher

SAGE Publications

Subject

General Biochemistry, Genetics and Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3