Affiliation:
1. College of Pharmacy, University of Illinois, Chicago, IL 60607, USA
2. College of Science & Technology, University of Wisconsin – Green Bay, Green Bay, WI 54311, USA
3. Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
Abstract
Microphysiologic systems (MPS), including new organ-on-a-chip technologies, recapitulate tissue microenvironments by employing specially designed tissue or cell culturing techniques and microfluidic flow. Such systems are designed to incorporate physiologic factors that conventional 2D or even 3D systems cannot, such as the multicellular dynamics of a tissue–tissue interface or physical forces like fluid sheer stress. The female reproductive system is a series of interconnected organs that are necessary to produce eggs, support embryo development and female health, and impact the functioning of non-reproductive tissues throughout the body. Despite its importance, the human reproductive tract has received less attention than other organ systems, such as the liver and kidney, in terms of modeling with MPS. In this review, we discuss current gaps in the field and areas for technological advancement through the application of MPS. We explore current MPS research in female reproductive biology, including fertilization, pregnancy, and female reproductive tract diseases, with a focus on their clinical applications. Impact statement This review discusses existing microphysiologic systems technology that may be applied to study of the female reproductive tract, and those currently in development to specifically investigate gametes, fertilization, embryo development, pregnancy, and diseases of the female reproductive tract. We focus on the clinical applicability of these new technologies in fields such as assisted reproductive technologies, drug testing, disease diagnostics, and personalized medicine.
Subject
General Biochemistry, Genetics and Molecular Biology
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献