Porosity and cutting forces: from macroscale to microscale machining correlations

Author:

Tutunea-Fatan O R1,Fakhri M A12,Bordatchev E V12

Affiliation:

1. Mechanical and Materials Engineering, The University of Western Ontario, London, Ontario, Canada

2. National Research Council of Canada, Industrial Materials Institute, Ontario, London, Canada

Abstract

Porous metals, typically produced through powder metallurgy, represent a class of relatively new materials with wide industrial applications, lately extending into the microscale domain. Although produced in near-net shapes, most components fabricated from these materials still require some form of secondary machining. Despite the progress made in the field, relatively little is known either on the inherent cutting mechanism or on the behaviour of these materials under micromachining conditions. The present study reviews the main cutting theories proposed in macroscale machining, along with one of the primary parameters used to describe its machinability performances, namely cutting forces. Then, the feasibility of macroscale concepts is discussed in the context of micromachining technology that is characterized by comparable tool and pore sizes. The microslot cutting experiment performed in a porous titanium sample outlined the relative interplay between the magnitude of the cutting force and porosity of the material. Based on this, it was concluded that the impact of structural porosity on cutting forces experienced during micromachining is significant and therefore further in-depth investigations will be required.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3