Succinate dehydrogenase inhibitor dimethyl malonate alleviates LPS/d-galactosamine-induced acute hepatic damage in mice

Author:

Yang Yongqiang1ORCID,Shao Ruyue23,Tang Li1,Li Longjiang1,Zhu Min4,Huang Jiayi1,Shen Yi1,Zhang Li1

Affiliation:

1. Department of Pathophysiology, Chongqing Medical University, PR China

2. Clinical Medical School, Chongqing Medical and Pharmaceutical College, PR China

3. Chongqing Engineering Research Center of Pharmaceutical Sciences, PR China

4. Department of Pathology, Karamay Central Hospital, PR China

Abstract

In addition to its energy-supplying function, increasing evidence suggests that mitochondria also play crucial roles in the regulation of inflammation. Succinate dehydrogenase is also known as mitochondrial complex II, and inhibition of succinate dehydrogenase by dimethyl malonate has been reported to suppress the production of pro-inflammatory cytokines. In the present study, the potential anti-inflammatory benefits of dimethyl malonate were investigated in a mouse model with LPS/d-galactosamine-induced acute hepatic damage. Male BALB/c mice were injected i.p. with LPS and d-galactosamine to cause liver injury. The degree of liver injury, inflammatory response and oxidative stress and the survival of the experimental animals were determined. The results indicated dimethyl malonate decreased the level of aminotransferases in plasma, alleviated histological abnormalities in liver, inhibited the induction of TNF-α and IL-6 in plasma, suppressed hepatocyte apoptosis and improved the survival of LPS/d-galactosamine-exposed mice. Therefore, inhibition of succinate dehydrogenase by dimethyl malonate significantly alleviated LPS/d-galactosamine-induced hepatic damage, which suggests that succinate dehydrogenase might become a novel target for the intervention of inflammation-based hepatic disorders.

Funder

Science and Technology Planning Project of Yuzhong district of Chongqing

Publisher

SAGE Publications

Subject

Infectious Diseases,Cell Biology,Molecular Biology,Immunology,Microbiology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3