Longer Screws Can Reduce the Stress on the Upper Instrumented Vertebra With Long Spinal Fusion Surgery: A Finite Element Analysis Study

Author:

Oe Shin1ORCID,Narita Kengo2,Hasegawa Kazuhiro3,Natarajan Raghu N.4,Yamato Yu1,Hasegawa Tomohiko5,Yoshida Go5,Banno Tomohiro5,Arima Hideyuki5,Mihara Yuki5,Ushirozako Hiroki5ORCID,Ide Koichiro5ORCID,Yamada Tomohiro5ORCID,Watanabe Yuh5,Matsuyama Yukihiro5

Affiliation:

1. Division of Geriatric Musculoskeletal Health, Department of Orthopedic Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan

2. Department of Medical, Maruemu Works Co., Ltd, Osaka, Japan

3. Niigata Spine Surgery Center, Niigata, Japan

4. Rush University Medical Center, Chicago, IL, USA

5. Department of Orthopedic Surgery, Hamamatsu University School of Medicine, Shizuoka, Japan

Abstract

Study Design: A finite element analysis study. Objective: Of proximal junctional failure, upper instrumented vertebra (UIV) fracture can causes severe spinal cord injury. Previously, we reported that higher occupancy rate of pedicle screw (ORPS) at UIV prevented UIV fracture in adult spinal deformity surgery; we had not yet tested this finding using a biomechanical study. The purpose of present study was to measure the differences in loads on the UIV according to the length of PS and ORPS. Methods: We designed an FE model of a lumbar spine (L1-S1) using FE software. The PS was set from L2 to S1 and connected the rod. The FE model simulated flexion (8 Nm) to investigate the loads at UIV (L2) according to the length of the PS. There were 5 screw lengths examined: 40 (ORPS 36.4%), 45 (48.5%), 50 (66.7%), 55 (81.8%), and 60 mm (93.9%). Results: Stress with bending motion was likely to occur at the upper front edge of the vertebral body, the pedicles, and the screw insertion point. The maximum equivalent stress according to screw lengths of 40, 45, 50, 55, and 60 mm were 45.6, 37.2, 21.6, 13.3, and 14.8 MPa, respectively. The longer screw, the less stress was applied to UIV. No remarkable change was observed between the screw lengths of 55 and 60 mm. Conclusions: Increasing ORPS to 81.8% or more reduced the load on the UIV. To prevent UIV fracture, the PS length in the UIV should be more than ORPS 81.8%.

Publisher

SAGE Publications

Subject

Clinical Neurology,Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3