Applied Methods for Estimating Transition Probabilities from Electronic Health Record Data

Author:

Rodriguez Patricia J.1ORCID,Ward Zachary J.2,Long Michael W.3,Austin S. Bryn45,Wright Davene R.16ORCID

Affiliation:

1. Comparative Health Outcomes, Policy, and Economics Institute, University of Washington, Seattle, WA, USA

2. Center for Health Decision Science, Harvard T. H. Chan School of Public Health, Boston, MA, USA

3. Department of Prevention and Community Health, Milken Institute School of Public Health, George Washington University, Washington, DC, USA

4. Department of Social and Behavioral Sciences, Harvard T. H. Chan School of Public Health, Boston, MA, USA

5. Division of Adolescent and Young Adult Medicine, Boston Children’s Hospital, Boston, MA, USA

6. Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA

Abstract

Background Electronic health record (EHR) data contain longitudinal patient information and standardized diagnostic codes. EHR data may be useful for estimating transition probabilities for state-transition models, but no guidelines exist on appropriate methods. We applied 3 potential methods to estimate transition probabilities from EHR data, using pediatric eating disorders (EDs) as a case study. Methods We obtained EHR data from PEDsnet, which includes 8 US children’s hospitals. Data included inpatient, outpatient, and emergency department visits for all patients with an ED. We mapped diagnoses to 3 ED health states: anorexia nervosa, bulimia nervosa, and other specified feeding or eating disorder. We estimated 1-y transition probabilities for males and females using 3 approaches: simple first-last proportions, a multistate Markov (MSM) model, and independent survival models. Results Transition probability estimates varied widely between approaches. The first-last proportion approach estimated higher probabilities of remaining in the same health state, while the MSM and independent survival approaches estimated higher probabilities of transitioning to a different health state. All estimates differed substantially from published literature. Limitations As a source of health state information, EHR data are incomplete and sometimes inaccurate. EHR data were especially challenging for EDs, limiting the estimation and interpretation of transition probabilities. Conclusions The 3 approaches produced very different transition probability estimates. Estimates varied considerably from published literature and were rescaled and calibrated for use in a microsimulation model. Estimation of transition probabilities from EHR data may be more promising for diseases that are well documented in the EHR. Furthermore, clinicians and health systems should work to improve documentation of ED in the EHR. Further research is needed on methods for using EHR data to inform transition probabilities.

Publisher

SAGE Publications

Subject

Health Policy

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3