Bias in Reinforcement Learning: A Review in Healthcare Applications

Author:

Smith Benjamin1ORCID,Khojandi Anahita2ORCID,Vasudevan Rama3ORCID

Affiliation:

1. University of Tennessee: Bredesen Center for Interdisciplinary Research

2. University of Tennessee: Department of Industrial and Systems Engineering

3. Oak Ridge National Laboratory: Center for Nanophase Materials Sciences

Abstract

Reinforcement learning (RL) can assist in medical decision making using patient data collected in electronic health record (EHR) systems. RL, a type of machine learning, can use these data to develop treatment policies. However, RL models are typically trained using imperfect retrospective EHR data. Therefore, if care is not taken in training, RL policies can propagate existing bias in healthcare. Literature that considers and addresses the issues of bias and fairness in sequential decision making are reviewed. The major themes to mitigate bias that emerge relate to (1) data management; (2) algorithmic design; and (3) clinical understanding of the resulting policies.

Funder

Science Alliance, The University of Tennessee, and the Laboratory Directed Research

Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy

Publisher

Association for Computing Machinery (ACM)

Subject

General Computer Science,Theoretical Computer Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3