Calculating Partial Expected Value of Perfect Information via Monte Carlo Sampling Algorithms

Author:

Brennan Alan1,Kharroubi Samer2,O'Hagan Anthony3,Chilcott Jim4

Affiliation:

1. School of Health and Related Research, The University of Sheffield, Sheffield, England,

2. Department of Mathematics, University of York, Heslington, York, England

3. Department of Probability and Statistics, The University of Sheffield, Sheffield, England

4. School of Health and Related Research, The University of Sheffield, Sheffield, England

Abstract

Partial expected value of perfect information (EVPI) calculations can quantify the value of learning about particular subsets of uncertain parameters in decision models. Published case studies have used different computational approaches. This article examines the computation of partial EVPI estimates via Monte Carlo sampling algorithms. The mathematical definition shows 2 nested expectations, which must be evaluated separately because of the need to compute a maximum between them. A generalized Monte Carlo sampling algorithm uses nested simulation with an outer loop to sample parameters of interest and, conditional upon these, an inner loop to sample remaining uncertain parameters. Alternative computation methods and shortcut algorithms are discussed and mathematical conditions for their use considered. Maxima of Monte Carlo estimates of expectations are biased upward, and the authors show that the use of small samples results in biased EVPI estimates. Three case studies illustrate 1) the bias due to maximization and also the inaccuracy of shortcut algorithms 2) when correlated variables are present and 3) when there is nonlinearity in net benefit functions. If relatively small correlation or nonlinearity is present, then the shortcut algorithm can be substantially inaccurate. Empirical investigation of the numbers of Monte Carlo samples suggests that fewer samples on the outer level and more on the inner level could be efficient and that relatively small numbers of samples can sometimes be used. Several remaining areas for methodological development are set out. A wider application of partial EVPI is recommended both for greater understanding of decision uncertainty and for analyzing research priorities.

Publisher

SAGE Publications

Subject

Health Policy

Reference42 articles.

1. Manning WG, Fryback DG, Weinstein MC Reflecting uncertainty in cost-effectiveness analysis. In: Gold MR, Siegel JE, Russell LB, Weinstein MC , eds. Cost-effectiveness in Health and Medicine. New York: Oxford University Press; 1996. p 247—75.

2. Measures of importance for economic analysis based on decision modeling

3. Sensitivity Analysis and the Expected Value of Perfect Information

4. The role of modelling in prioritising and planning clinical trials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3