Uncertainty Quantification in Cost-effectiveness Analysis for Stochastic-based Infectious Disease Models: Insights from Surveillance on Lymphatic Filariasis

Author:

Antony Oliver Mary Chriselda,Graham Matthew,Manolopoulou Ioanna,Medley Graham F.,Pellis Lorenzo,Pouwels Koen B,Thorpe Matthew,Hollingsworth T. Deirdre

Abstract

AbstractCost-effectiveness analyses (CEA) typically involve comparing effectiveness and costs of one or more interventions compared to standard of care, to determine which intervention should be optimally implemented to maximise population health within the constraints of the healthcare budget. Traditionally, cost-effectiveness evaluations are expressed using incremental cost-effectiveness ratios (ICERs), which are compared with a fixed willingness-to-pay (WTP) threshold. Due to the existing uncertainty in costs for interventions and the overall burden of disease, particularly with regard to diseases in populations that are difficult to study, it becomes important to consider uncertainty quantification whilst estimating ICERs.To tackle the challenges of uncertainty quantification in CEA, we propose an alternative paradigm utilizing the Linear Wasserstein framework combined with Linear Discriminant Analysis (LDA) using a demonstrative example of lymphatic filariasis (LF). This approach uses geometric embeddings of the overall costs for treatment and surveillance, disability-adjusted lifeyears (DALYs) averted for morbidity by quantifying the burden of disease due to the years lived with disability, and probabilities of local elimination over a time-horizon of 20 years to evaluate the cost-effectiveness of lowering the stopping thresholds for post-surveillance determination of LF elimination as a public health problem. Our findings suggest that reducing the stopping threshold from <1% to <0.5% microfilaria (mf) prevalence for adults aged 20 years and above, under various treatment coverages and baseline prevalences, is cost-effective. When validated on 20% of test data, for 65% treatment coverage, a government expenditure of WTP ranging from $500 to $3,000 per 1% increase in local elimination probability justifies the switch to the lower threshold as cost-effective.Stochastic model simulations often lead to parameter and structural uncertainty in CEA. Uncertainty may impact the decisions taken, and this study underscores the necessity of better uncertainty quantification techniques within CEA for making informed decisions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3