The Effect of Disease-prevalence Adjustments on the Accuracy of a Logistic Prediction Model

Author:

Morise Anthony P.,Diamond George A.,Detrano Robert,Bobbio Marco,Gunel Erdogan

Abstract

The accuracy of a logistic prediction model is degraded when it is transported to pop ulations with outcome prevalences different from that of the population used to derive the model. The resultant errors can have major clinical implications. Accordingly, the authors developed a logistic prediction model with respect to the noninvasive diagnosis of coronary disease based on 1,824 patients who underwent exercise testing and coronary angiography, varied the prevalence of disease in various "test" populations by random sampling of the original "derivation" population, and determined the accu racy of the logistic prediction model before and after the application of a mathematical algorithm designed to adjust only for these differences in prevalence. The accuracy of each prediction model was quantified in terms of receiver operating characteristic (ROC) curve area (discrimination) and chi-square goodness-of-fit (calibration). As the prevalence of the test population diverged from the prevalence of the derivation pop ulation, discrimination improved (ROC-curve areas increased from 0.82 ± 0.02 to 0.87 ± 0.03; p < 0.05), and calibration deteriorated (chi-square goodness-of-fit statistics increased from 9 to 154; p < 0.05). Following adjustment of the logistic intercept for differences in prevalence, discrimination was unchanged and calibration improved (maximum chi-square goodness-of-fit fell from 154 to 16). When the adjusted algorithm was applied to three geographically remote populations with prevalences that differed from that of the derivation population, calibration improved 87%, while discrimination fell by 1 %. Thus, prevalence differences produce statistically significant and potentially clinically important errors in the accuracy of logistic prediction models. These errors can potentially be mitigated by use of a relatively simple mathematical correction al gorithm. Key words: logistic prediction model; accuracy; prevalence adjustments; model transportability. (Med Decis Making 1996;16:133-142)

Publisher

SAGE Publications

Subject

Health Policy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3