Estimation of fault probability in medium voltage feeders through calibration techniques in classification models

Author:

De Santis EnricoORCID,Arnò Francesco,Rizzi Antonello

Abstract

AbstractMachine Learning is currently a well-suited approach widely adopted for solving data-driven problems in predictive maintenance. Data-driven approaches can be used as the main building block in risk-based assessment and analysis tools for Transmission and Distribution System Operators in modern Smart Grids. For this purpose, a suitable Decision Support System should be able of providing not only early warnings, such as the detection of faults in real time, but even an accurate probability estimate of outages and failures. In other words, the performance of classification systems, at least in these cases, needs to be assessed even in terms of reliable outputting posterior probabilities, a really important feature that, in general, classifiers very often do not offer. In this paper are compared several state-of-the-art calibration techniques along with a set of simple new proposed techniques, with the aim of calibrating fuzzy scoring values of a custom-made evolutionary-cluster-based hybrid classifier trained on a set of a real-world dataset of faults collected within the power grid that feeds the city of Rome, Italy. Comparison results show that in real-world cases calibration techniques need to be assessed carefully depending on the scores distribution and the proposed techniques are a valid alternative to the ones existing in the technical literature in terms of calibration performance, computational efficiency and flexibility.

Funder

Università degli Studi di Roma La Sapienza

Publisher

Springer Science and Business Media LLC

Subject

Geometry and Topology,Theoretical Computer Science,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3