On component-wise dissimilarity measures and metric properties in pattern recognition

Author:

De Santis Enrico1,Martino Alessio2ORCID,Rizzi Antonello1

Affiliation:

1. Department of Information Engineering, Electronics and Telecommunications, University of Roma “La Sapienza”, Rome, Italy

2. Department of Business and Management, LUISS University, Rome, Italy

Abstract

In many real-world applications concerning pattern recognition techniques, it is of utmost importance the automatic learning of the most appropriate dissimilarity measure to be used in object comparison. Real-world objects are often complex entities and need a specific representation grounded on a composition of different heterogeneous features, leading to a non-metric starting space where Machine Learning algorithms operate. However, in the so-called unconventional spaces a family of dissimilarity measures can be still exploited, that is, the set of component-wise dissimilarity measures, in which each component is treated with a specific sub-dissimilarity that depends on the nature of the data at hand. These dissimilarities are likely to be non-Euclidean, hence the underlying dissimilarity matrix is not isometrically embeddable in a standard Euclidean space because it may not be structurally rich enough. On the other hand, in many metric learning problems, a component-wise dissimilarity measure can be defined as a weighted linear convex combination and weights can be suitably learned. This article, after introducing some hints on the relation between distances and the metric learning paradigm, provides a discussion along with some experiments on how weights, intended as mathematical operators, interact with the Euclidean behavior of dissimilarity matrices.

Publisher

PeerJ

Subject

General Computer Science

Reference64 articles.

1. Learning distance functions using equivalence relations;Bar-Hillel;Proceedings of the 20th International Conference on Machine Learning (ICML-03),2003

2. Foundations of multidimensional scaling;Beals;Psychological Review,1968

3. Laplacian eigenmaps for dimensionality reduction and data representation;Belkin;Neural Computation,2003

4. A survey on metric learning for feature vectors and structured data;Bellet;ArXiv,2013

5. Representation learning: a review and new perspectives;Bengio;IEEE Transactions on Pattern Analysis and Machine Intelligence,2013

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3