Effects of Categorizing Continuous Variables in Decision-Analytic Models

Author:

Bentley Tanya G. K.1,Weinstein Milton C.2,Kuntz Karen M.3

Affiliation:

1. Faculty of Arts and Sciences, Harvard University, Cambridge, Massachusetts

2. Department of Health Policy and Management, Harvard School of Public Health, Boston, Massachusetts

3. Department of Health Policy and Management, Harvard School of Public Health, Boston, Massachusetts,

Abstract

Purpose. When using continuous predictor variables in discrete-state Markov modeling, it is necessary to create categories of risk and assume homogeneous disease risk within categories, which may bias model outcomes. This analysis assessed the tradeoffs between model bias and complexity and/or data limitations when categorizing continuous risk factors in Markov models. Methods. The authors developed a generic Markov cohort model of disease, defining bias as the percentage change in life expectancy gain from a hypothetical intervention when using 2 to 15 risk factor categories as compared with modeling the risk factor as a continuous variable. They evaluated the magnitude and sign of bias as a function of disease incidence, disease-specific mortality, and relative difference in risk among categories. Results. Bias was positive in the base case, indicating that categorization overestimated life expectancy gains. The bias approached zero as the number of risk factor categories increased and did not exceed 4% for any parameter combinations or numbers of categories considered. For any given disease-specific mortality and disease incidence, bias increased with relative risk of disease. For any given relative risk, the relationship between bias and parameters such as disease-specific mortality or disease incidence was not always monotonic. Conclusions. Under the assumption of a normally distributed risk factor and reasonable assumption regarding disease risk and moderate values for the relative risk of disease given risk factor category, categorizing continuously valued risk factors in Markov models is associated with less than 4% absolute bias when at least 2 categories are used.

Publisher

SAGE Publications

Subject

Health Policy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3