Biomechanical Evaluation of a Novel Loop Retention Mechanism for Cortical Graft Fixation in ACL Reconstruction

Author:

Götschi Tobias12,Rosenberg George1,Li Xiang1,Zhang Chen13,Bachmann Elias12,Snedeker Jess G.12,Fucentese Sandro F.3

Affiliation:

1. Institute for Biomechanics, ETH Zurich, Zurich, Switzerland.

2. Department of Orthopedics, Balgrist University Hospital, Zurich, Switzerland.

3. Department of Orthopedics, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China.

Abstract

Background: Implant fixation by means of a cortical fixation device (CFD) has become a routine procedure in anterior cruciate ligament reconstruction. There is no clear consensus whether adjustable-length CFDs are more susceptible to loop lengthening when compared with pretied fixed-length CFDs. Purpose: To assess biomechanical performance measures of 3 types of CFDs when subjected to various loading protocols. Study Design: Controlled laboratory study. Methods: Three types of CFDs underwent biomechanical testing: 1 fixed length and 2 adjustable length. One of the adjustable-length devices is based on the so-called finger trap mechanism, and the other is based on a modified sling lock mechanism. A device-only test of 5000 cycles (n = 8 per group) and a tendon-device test of 1000 cycles (n = 8 per group) with lower and upper force limits of 50 and 250 N, respectively, were applied, followed by ramp-to-failure testing. Adjustable-length devices then underwent further cyclic testing with complete loop unloading (n = 5 per group) at each cycle, as well as fatigue testing (n = 3 per group) over a total of 1 million cycles. Derived mechanical parameters were compared among the devices for statistical significance using Kruskal-Wallis analysis of variance followed by post hoc Mann-Whitney U testing with Bonferroni correction. Results: All CFDs showed elongation <2 mm after 5000 cycles when tested in an isolated manner and withstood ultimate tensile forces in excess of estimated peak in vivo forces. In both device-only and tendon-device tests, differences in cyclic performance were found among the devices, favoring adjustable-length fixation devices over the fixed-length device. Completely unloading the suspension loops, however, led to excessive loop lengthening of the finger trap device, whereas the modified sling lock device remained stable throughout the test. The fixed-length device displayed superior ultimate strength over both adjustable-length devices. Both adjustable-length devices showed adequate fatigue behavior during high-cyclic testing. Conclusion: All tested devices successfully prevented critical construct elongation when tested with constant tension and withstood ultimate loads in excess of estimated in vivo forces during the rehabilitation phase. The finger trap device gradually lengthened excessively when completely unloaded during cyclic testing. Clinical Relevance: Critical loop lengthening may occur if adjustable-length devices based on the finger trap mechanism are repeatedly unloaded in situ.

Publisher

SAGE Publications

Subject

Orthopedics and Sports Medicine

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3