Complementary Function of the Meniscofemoral Ligament and Lateral Meniscus Posterior Root to Stabilize the Lateral Meniscus Posterior Horn: A Biomechanical Study in a Porcine Knee Model

Author:

Ohori Tomoki1,Mae Tatsuo1,Shino Konsei2,Tachibana Yuta2,Fujie Hiromichi3,Yoshikawa Hideki1,Nakata Ken1

Affiliation:

1. Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Suita, Japan.

2. Sports Orthopaedic Surgery Center, Yukioka Hospital, Osaka, Japan.

3. Department of Intelligent Mechanical Systems, Faculty of System Design, Tokyo Metropolitan University, Tokyo, Japan.

Abstract

Background: It has been demonstrated that the load distribution function of the lateral meniscus (LM) is compromised by resecting both the meniscofemoral ligament (MFL) and LM posterior root (LMPR). However, the effect of resecting these fibers on load transmission through the LM needs to be investigated. Purpose: To evaluate using a porcine knee model (1) the in situ forces of the MFL and LMPR and (2) the effect of resecting these fibers on the in situ force of the LM under a compressive load and valgus torque to the lateral knee compartment. Study Design: Controlled laboratory study. Methods: Twenty fresh-frozen porcine knees and a 6 degrees of freedom robotic system were utilized. An axial compressive load of 250 N and 5 N·m of valgus torque were applied to intact, MFL-deficient, LMPR-deficient, and MFL/LMPR-deficient knees at 30°, 60°, and 90° of flexion. The valgus angles under the applied loads were compared among the 4 states. The in situ forces of the MFL and LMPR under the applied loads were calculated under the principle of superposition. The in situ forces of the LM under the applied loads were also calculated and compared among the 4 conditions (intact, without the MFL, without LMPR, and without the MFL/LMPR). Results: The valgus angles significantly increased after resecting both the MFL and LMPR at all the flexion angles. The in situ forces of the MFL and LMPR changed reciprocally as the knee flexed. The in situ forces of the LM significantly decreased after resecting both the MFL and LMPR, although resecting only the MFL or LMPR represented no significant effect. Conclusion: The MFL and LMPR functioned complementarily as the posterior attachments of the LM against a compressive load and valgus torque to the lateral knee compartment in porcine knee joints. Clinical Relevance: If the LMPR is completely detached and needs to be repaired, the MFL should be preserved because it may provide some stability to the LM posterior horn and protect the repaired LMPR.

Publisher

SAGE Publications

Subject

Orthopedics and Sports Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3