Use of Robotic Manipulators to Study Diarthrodial Joint Function

Author:

Debski Richard E.1,Yamakawa Satoshi2,Musahl Volker3,Fujie Hiromichi2

Affiliation:

1. Orthopaedic Robotics Laboratory, Departments of Bioengineering and Orthopaedic Surgery, University of Pittsburgh, 408 Center for Bioengineering, 300 Technology Drive, Pittsburgh, PA 15219 e-mail:

2. Tokyo Metropolitan University, 6-6 Asahigaoka, Hino, Tokyo 191-0065, Japan

3. Orthopaedic Robotics Laboratory, Departments of Orthopaedic Surgery and Bioengineering, University of Pittsburgh, 408 Center for Bioengineering, 300 Technology Drive, Pittsburgh, PA 15219

Abstract

Diarthrodial joint function is mediated by a complex interaction between bones, ligaments, capsules, articular cartilage, and muscles. To gain a better understanding of injury mechanisms and to improve surgical procedures, an improved understanding of the structure and function of diarthrodial joints needs to be obtained. Thus, robotic testing systems have been developed to measure the resulting kinematics of diarthrodial joints as well as the in situ forces in ligaments and their replacement grafts in response to external loading conditions. These six degrees-of-freedom (DOF) testing systems can be controlled in either position or force modes to simulate physiological loading conditions or clinical exams. Recent advances allow kinematic, in situ force, and strain data to be measured continuously throughout the range of joint motion using velocity-impedance control, and in vivo kinematic data to be reproduced on cadaveric specimens to determine in situ forces during physiologic motions. The principle of superposition can also be used to determine the in situ forces carried by capsular tissue in the longitudinal direction after separation from the rest of the capsule as well as the interaction forces with the surrounding tissue. Finally, robotic testing systems can be used to simulate soft tissue injury mechanisms, and computational models can be validated using the kinematic and force data to help predict in vivo stresses and strains present in these tissues. The goal of these analyses is to help improve surgical repair procedures and postoperative rehabilitation protocols. In the future, more information is needed regarding the complex in vivo loads applied to diarthrodial joints during clinical exams and activities of daily living to serve as input to the robotic testing systems. Improving the capability to accurately reproduce in vivo kinematics with robotic testing systems should also be examined.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3