An experimental investigation of low viscosity lubricants on three piece oil control rings cylinder liner friction

Author:

Forder Michael D1,Morris Nicholas1ORCID,King Paul1,Balakrishnan Sashi2,Howell-Smith Sebastian3

Affiliation:

1. Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Leicestershire, UK

2. Castrol Ltd., BP Technology Centre, Whitchurch Hill, Oxfordshire, UK

3. Capricorn Automotive Ltd., Basingstoke, UK

Abstract

Reducing energy use and improving engine efficiency is a complex task however to date a continued reduction of lubricant viscosity has proved effective. Reducing viscosity decreases hydrodynamic friction and pumping losses however it can also exacerbate boundary friction losses. Detailed and representative component level experimentation is required to understand the effects of viscosity reduction on friction and opportunity for further optimisation. This paper presents a novel motored reciprocating Tribometer which has been developed to measure the friction between complete cylinder liners and three-piece oil control rings. The system holds individual or multiple rings stationary in a bespoke ring holder and reciprocate the cylinder liner thereby replicates the relative kinematics of the components in service. The new design has many operational advantages to identify and benchmark the individual contribution of oil control ring friction including near total isolation of oil ring-cylinder liner bore conjunction, pure rectilinear motion and use of full components without resorting to split liner/ring geometries. The experimental rig is used to measure friction at the three-piece oil control ring- cylinder liner conjunction when lubricated with two low viscosity lubricants. The results show prevalence of mixed regime lubrication across the speeds, temperatures and lubricants investigated. The oil control ring under investigation is shown to operate in mixed regime lubrication and at cold start the introduction of lower viscosity lubricants such as 0W-8 showed higher level of oil control ring-cylinder liner friction in comparison to the 0W-40. The information and experimental facility are of critical use for engine designers when considering the potential contradictory component efficiency behaviour when moving to ultra-low viscosity lubricants.

Funder

Engineering and Physical Sciences Research Council

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3