Comparison of MLP and RBF neural networks for bearing remaining useful life prediction based on acoustic emission

Author:

Motahari-Nezhad Mohsen1,Jafari Seyed Mohammad1ORCID

Affiliation:

1. Faculty of Mechanical and Energy Engineering, Shahid Beheshti University, Tehran, Iran

Abstract

In this research, the efficiency of multilayer perceptron (MLP) and radial basis function (RBF) neural networks in estimating the remaining useful life (RUL) of angular contact ball bearing based on acoustic emission signals are investigated. To capture the bearing acoustic emission signals, an appropriate laboratory setup is used. Acoustic emission signal processing is carried out in the time and frequency domain and 102 different features are extracted. Prognostic feature selection have been used to reduce the dimension of the extracted features. Applications of the different training algorithms in MLP neural network are compared for bearing RUL prediction. The results indicate that acoustic emission is a good method for bearing RUL prediction. Mobility, Square-mean-root, and Count are the best time domain features based on the used feature selection method. Also, the Frequency center, Signal power, and F60 are the best frequency domain features. It was shown that between different backpropagation training algorithms for MLP neural net, Levenberg Marquardt has the lowest SSE error of 7.86 for the prediction of bearing remaining useful life based on frequency domain features. Moreover, comparison of RBF and MLP neural networks shows that RBF neural networks presents the best performance with SSE error of 2.85.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3