Hybrid physics data-driven model-based fusion framework for machining tool wear prediction
Author:
Publisher
Springer Science and Business Media LLC
Link
https://link.springer.com/content/pdf/10.1007/s00170-024-13365-6.pdf
Reference49 articles.
1. Zhang C, Wang W, Li H (2022) Tool wear prediction method based on symmetrized dot pattern and multi-covariance gaussian process regression. Measurement 189:110466
2. He Z, Shi T, Xuan J (2022) Milling tool wear prediction using multi-sensor feature fusion based on stacked sparse autoencoders. Measurement 190:110719
3. Luo H, Zhang Z, Luo M, and Zhang D (2022) A comparative study of force models in monitoring the flank wear using the cutting force coefficients. Proc Inst Mech Eng Pt C-J Mechan Eng Sci 2022 0(0):1–14
4. Wilkus M, Rauch L, Szeliga D, Pietrzyk M (2019) Evaluation of adhesive wear mechanism for application in hybrid tool wear model in hot forging process. Arch Metall Mater 64(4):1395–1402
5. Hua J, Shivpuri R (2005) A cobalt diffusion based model for predicting crater wear of carbide tools in machining titanium alloys. J Eng Mater Technol-Trans Asme 127(1):136–144
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3