A wavelet-analysis-based differential method for engine wear monitoring via on-line visual ferrograph

Author:

Wu Jiaoyi1,Mi Xinyan2,Wu Tonghai1,Mao Junhong1,Xie You-Bai1

Affiliation:

1. Theory of Lubrication and Bearing Institute, Xi’an Jiaotong University, Xi’an, People’s Republic of China

2. China FAW Group Corporation R&D Center, Changchun, People’s Republic of China

Abstract

Wear over time affects engine’s reliability and efficiency. On-line wear monitoring could provide timely information about engine health condition. In the current study, on-line monitoring of engine wear via an on-line visual ferrograph was performed in reliability tests of gasoline engines, and a wavelet-analysis-based differential method of data analysis for wear condition estimation was proposed. The tests were designed for 220 h, which consist of a running-in stage of 20 h and a thermal shock cycle test stage of 200 h. One of the tests was terminated because of failures in the main bearings and crankshaft journal at 146th hour of thermal shock cycle test, while the other two completed successfully without failures. Index of particle coverage area, which represents wear-debris concentration in lube oil, was studied, and piecewise trend-extraction of index of particle coverage area was achieved by wavelet decomposition and reconstruction. The first-order differential of the index of particle coverage area trend was used to represent the wear rate or the generation rate of debris for health condition assessment of engines. Off-line oil analyses were performed in laboratory via an analytical ferrograph, and engine disassembly results of the engines were given to determine the causes of engine failures if it happened. It is found that favorable trend extraction from index of particle coverage area could be achieved by the segmented wavelet de-noising. Moreover, on-line visual ferrograph monitoring estimated the engine wear at macro-levels effectively, and it provided an advance warning for the failures after the continued deterioration of the engine wear. The study and application of this method can make early failure prediction of engine and avoid serious fault.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3