Multistate Diagnosis and Prognosis of Lubricating Oil Degradation Using Sticky Hierarchical Dirichlet Process–Hidden Markov Model Framework

Author:

Tanwar Monika,Park Hyunseok,Raghavan NagarajanORCID

Abstract

In this study, we present a state-based diagnostic and prognostic methodology for lubricating oil degradation based on a nonparametric Bayesian approach, i.e., sticky hierarchical Dirichlet process–hidden Markov model (HDP-HMM). An accurate health state-space assessment for diagnostics and prognostics has always been unobservable and hypothetical in the past. The lubrication condition monitoring (LCM) data is generally segregated as “healthy or unhealthy”, representing a binary state-based perspective to the problem. This two-state performance-based formulation poses limitations to the precision and accuracy of the diagnosis and prognosis for real data wherein there may be multiple states of discrete performance that are characteristic of the system functionality. In particular, the reversible and nonlinear time-series trends of degradation data increase the complexity of state-based modeling. We propose a multistate diagnostic and prognostic framework for LCM data in the wear-out phase (i.e., the unhealthy portion of degradation data), accounting for irregular oil replenishment and oil change effects (i.e., nonlinearity in the degradation signal). The LCM data is simulated for an elementary mechanical system with four components. The sticky HDP sets the prior for the HMM parameters. The unsupervised learning over infinite observations and emission reveals four discrete health states and helps estimate the associated state transition probabilities. The inferred state sequence provides information relating to the state dynamics, which provides further guidance to maintenance decision making. The decision making is further backed by prognostics based on the conditional reliability function and mean residual life estimation.

Funder

Ministry of Education - Singapore

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Emotional representation of music in multi-source data by the Internet of Things and deep learning;The Journal of Supercomputing;2022-07-09

2. Condition Based Maintenance Policy for Crankcase Lubricating Oil in Diesel Locomotives;2021 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM);2021-12-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3