Tooth wear prediction of crowned helical gears in point contact

Author:

Wang Hongbing1,Zhou Changjiang12,Hu Bo1,Liu Zhongming3

Affiliation:

1. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, Hunan University, Changsha, PR China

2. State Key Laboratory of High Performance Complex Manufacturing, Central South University, Changsha, PR China

3. Zhengzhou Research Institute of Mechanical Engineering Co., Ltd., Zhengzhou, PR China

Abstract

A tooth wear prediction methodology for helical gears in point contact is developed to evaluate their wear resistances using a lead crown. The load distribution coefficient is proposed in accordance with the elastic approach of each contact tooth pair being equal, and contact pressure are determined, and the sliding distance is obtained by adopting a generalized moving distance model. Then, the wear depth is computed in accordance with Archard’s wear equation, and the differences in tooth wear on standard and crowned helical gears are analyzed comparatively. The effects of crowned amount, fundamental geometry, and operating parameters on the wear resistance of the crowned helical gear pair are investigated. The results reveal that the tooth wear is lower on the gear surface with a moderate crowned amount than on the standard one, and that wear depths decrease with the increase in the helix angle, normal pressure angle, normal module, tooth number, or tooth width but increase with input torque rises. Furthermore, the rational lead crown, the geometric, and operating parameters optimization can be applied to wear resistance in the gear design.

Funder

Open Research Fund of State Key Laboratory of High Performance Complex Manufacturing, Central South University

Key Basic Research Plan of Hunan Province

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3