Influences of transient impact and vibration on the lubrication performance of spur gears

Author:

Huang Xingbao1ORCID,Yang Bintang1ORCID,Wang Youqiang2

Affiliation:

1. School of Mechanical Engineering, State Key Laboratory of Mechanical Systems and Vibration, Shanghai Jiao Tong University, Shanghai, China

2. School of Mechanical Engineering, Qingdao University of Technology, Qingdao, China

Abstract

In this paper, the mathematical model of gear elastohydrodynamic lubrication is presented. The transient impact operating condition and underdamped load condition are considered. Taking thermal effect and squeeze effect into account, the full numerical solution of gear pairs is obtained. In this numerical calculation, multigrid method is applied to compute the film pressure; multigrid integration technique is used to calculate the solid surface deformation; column by column scanning technique is employed to calculate temperature. The simulation results show that an entrapped film dimple forms under transient impact condition; transient impact causes remarkable increases in film pressure and film temperature. Compared with the normal case the minimum thickness of the impact case is smaller, which is not beneficial to teeth lubrication. Thermal effect induces some decreases in film thickness because of the viscosity–temperature relationship. Vibrational load with high damped frequency causes greater increases in film thickness and greater decreases in the coefficient of friction than that of low damped frequency. However, the film temperature of high damped frequency is higher than that of low damped frequency.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3