Affiliation:
1. Faculty of Mechanical Engineering, Shahrood University of Technology, Iran
Abstract
In this paper, the molecular gas lubrication model was used to analyze the nonlinear dynamic behavior of two-lobe non-circular gas-lubricated micro-bearings. The effects of temperature rise are taken into account. At high temperatures, in addition to gas rarefaction, its viscosity and friction will also change, and slip across boundaries will occur. The rarefaction of the lubricating gas film caused by the microscale effect at high temperatures was considered. The effects of temperature and rotation speed (with and without rarefaction effect) on the dynamic behavior of the non-circular micro gas bearing were studied. The nonlinear equation governing the gas behavior is discretized using the finite-element method and then solved simultaneously with the dynamic equations of rotor motion using the fourth-order Runge–Kutta method. Center orbit diagrams, phase portraits, Poincare maps, power spectrum, and bifurcation diagrams are used to investigate the dynamic behavior of two-lobe non-circular gas-lubricated micro-bearings. Some results show that with increasing temperature, the rotor behavior changes from T-periodic to quasi-periodic. It was also observed that at high temperatures, with increasing rotational speed, the behavior of the system changes from T-periodic to quasi-periodic, but if the gas is rarefied, this change occurs at a slower speed.
Subject
Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献