Numerical solution of dry friction in point contact using the unified Reynolds method combined with rarefied gas effect

Author:

Zhan Wanglong1ORCID,Fang Yanfei2,Huang Ping3

Affiliation:

1. Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen, China

2. College of Mechanical Engineering and Automation, Huaqiao University, Xiamen, China

3. School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, China

Abstract

Dry friction problems are widespread in engineering applications. However, the current research on the contact pressure between interfaces mainly relies on static contact mechanics solutions, neglecting the influence of the contact pressure generated by the gases in the environment. In this paper, the ambient gas is considered as a lubricant with lubricating effects. Drawing inspiration from hydrodynamic lubrication methods, a unified mixed lubrication equation for dry friction problems is developed, taking into account the influence of gas rarefaction effects. This study computes the dry friction contact pressure under different winding speeds and loads. The advantage of this method lies in its ability to automatically distinguish between the contact and noncontact regions during the calculation process, enabling the determination of the contact pressure over the entire contact area. The computational results demonstrate that at low entrainment velocities, there is minimal deviation in contact pressure and contact area compared to Hertzian contact. However, as the entrainment velocity increases, the actual pressure-bearing area enlarges compared to static contact, and there is a smooth transition of pressure at the contact edge, which cannot be obtained from static contact analysis. Finally, the numerical solution of the contact pressure when the sliding speed spans several orders of magnitude is given, and the calculation results show that the numerical model has good robustness. This numerical approach offers valuable insights for guiding the design of air bearings in practical applications.

Funder

Natural Science Foundation of Fujian Province

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3