Research on influencing factors of deformation of hydrostatic thrust bearings

Author:

Yu Xiao-Dong1ORCID,Liu Hai-Xin1,Zhao Fei-Hu1,Li Rui-Chao1,Sun Kai-Xuan1,Wang Yi-Han1,Guan Li-Bo1,Dai Rui-Chun2,Jia Wen-Tao2,Wang Jun-Feng3,Jiang Hui4,Jiao Jian-Hua3

Affiliation:

1. Key Laboratory of Advanced Manufacturing and Intelligent Technology, Ministry of Education, Harbin University of Science and Technology, Harbin, China

2. Qiqihar First Machine Tool Factory Corp. Ltd., Qiqihar, China

3. Qiqihar Heavy CNC Equipment Corp. Ltd., Qiqihar, China

4. Qiqihar University School of Electrical and Mechanical Engineering, Qiqihar, China

Abstract

When the hydrostatic thrust bearings operate under conditions of high speed and heavy load, the oil film will be strongly sheared and squeezed, which will increase the temperature of the hydrostatic oil film, resulting in uneven deformation of the workbench and tribology in serious cases. The deformation of the friction pair greatly affects the stability of the workbench during operation, and then affects the machining accuracy. Taking the hydrostatic thrust bearings as the research object, the model of hydrostatic thrust bearings was established based on the fluid–thermosolid coupling theory, and the influencing factors of the deformation of the hydrostatic thrust bearings are analyzed using ANSYS Workbench software, and the influencing laws are discussed. Finally, the correctness of the simulation method is verified by experiments. The results show that the larger the lubricating oil viscosity, the greater the deformation of the guide surface and the oil pad. With the increase in the rotation rate, the deformation of the guide surface and the oil pad increases continuously. With the increase in the inlet flow rate, the deformation of the guide surface and the oil pad is continuously reduced. In engineering practice, on the premise of ensuring the bearings capacity, low-viscosity lubricating oil should be used as much as possible, the rotation rate should be lower, or the inlet flow rate should be increased.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3