Research on the oil film temperature field of hydrostatic bearing with variable viscosity dynamic simulation and experiment

Author:

Zhang Yan-Qin1,Sun Ji-Chang1,Kong Peng-Rui1,Kong Xiang-Bin1,Yu Xiao-Dong1

Affiliation:

1. College of Mechanical and Power Engineering, Harbin University of Science and Technology, Harbin, China

Abstract

In order to improve the lubrication performance of the double-rectangular cavity hydrostatic thrust bearing, this paper selects the temperature rise characteristics of hydrostatic bearing as the research object under the conditions of changing oil film thickness and different working conditions. Using the dynamic mesh method with variable viscosity dynamic simulation, the changing temperature rise curves under different inlet flow velocities and rotating speeds are obtained. This paper obtains the changing laws of oil film thickness and temperature under the hydrostatic bearing running in no-load, load 2.5 t, load 10 t and the rotating speeds of 40 r/min, 60 r/min and 80 r/min. Under the low rotating speed, the high temperature region in the oil cavity mainly concentrates on the counter flow side. With the increase of working speed, the high temperature region on the counter flow side expands to the oil seal side obviously. When the oil film thickness was in the range of 0.04 mm to 0.07 mm, the temperature of oil seal edge increased with the increase of the inlet flow velocity. Using the FLUENT software, the variable viscosity simulation of hydrostatic bearing is carried out under different oil film thickness, and the temperature distribution of oil cavity is obtained. Finally, the correctness of theoretical analysis and simulation are verified by conducting experiment.

Funder

This work was supported by Natural Science Foundation of Heilongjiang Province.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3