Numerical modelling of oil distribution and churning gear power losses of gearboxes by smoothed particle hydrodynamics

Author:

Liu Hua1,Arfaoui Ghaith2,Stanic Milos3,Montigny Laurent3,Jurkschat Thomas1ORCID,Lohner Thomas1,Stahl Karsten1

Affiliation:

1. Gear Research Centre (FZG), Technical University of Munich, Garching b. München, Germany

2. Ferchau Engineering GmbH, Nürnberg, Germany

3. FluiDyna GmbH, Unterschleißheim, Germany

Abstract

Sufficient oil supply of all machine elements in gearboxes is usually required to avoid damage during operation. Quite frequently, transmissions are conservatively designed with an oversupply of oil to guarantee operational reliability. An oversupply of oil results in an unnecessarily high amount of oil being kept in motion, which in turn leads to excessive hydraulic gear power losses. In high-speed gearboxes in particular, churning losses can contribute greatly to the total power losses. Further detailed information on the oil distribution in gearboxes is needed in order to increase the efficiency and operational reliability of gearboxes. Computational Fluid Dynamics methods provide a flexible way of investigating oil behaviour in transmissions with almost no restrictions regarding geometry and operating conditions. Generally, there are two main methods of computational fluid dynamics simulation in gearboxes: the traditional finite-volume based method (Eulerian approach) and the mesh-free particle-based method (Lagrangian approach). In this work, a computational fluid dynamics model based on the particle-based smoothed particle hydrodynamics method is built to investigate the oil distribution and churning losses of a dip-lubricated single stage gearbox on an efficiency gear test rig. Results are shown and discussed for different rotational speeds and oil temperatures. The smoothed particle hydrodynamics method provides a high potential of predicting the oil distribution of modern dip-lubricated transmission systems. Comparisons with high-speed camera recordings show good agreement. However, the method shows a need for improvement in churning loss prediction.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3