Affiliation:
1. CGC Landran, Mohali, India
2. Department of Mechanical Engineering, Punjab Engineering College (Deemed to be University), Chandigarh, India
Abstract
The present work evaluates the performance of different machining environments such as dry, wet, minimum quantity lubrication, Al2O3 nanofluids based minimum quantity lubrication, CuO nanofluids based minimum quantity lubrication and Al–CuO hybrid nanofluids based minimum quantity lubrication on machining performance characteristics during turning of EN-24. The nanofluids and hybrid nanofluids were prepared by adding the Al2O3, CuO and Al2O3/CuO to the soluble oil with different weight percentages (0.5 wt.%, 1 wt.%, 1.5 wt.%). The thermal and tribological properties of hybrid nanofluid and nanofluids were analyzed. The comparative analysis of different turning environments has been done. From comparative analysis it is clearly observed that the nanofluids and hybrid nanofluid shows better performance during turning of EN-24 steel. So there is a need for optimization of parameters during turning of EN-24 under Al2O3 nanofluids based minimum quantity lubrication, CuO nanofluids based minimum quantity lubrication and Al–CuO hybrid nanofluids based minimum quantity lubrication. The optimization of parameters has been done by response surface methodology. The significance of developed model was identified from analysis of variance. Multi-response optimization was done using desirability function approach. To verify the accuracy of developed models, confirmatory experiments were performed. The experimental results reveal that Al–CuO hybrid nanofluids based minimum quantity lubrication significantly improves surface quality, reduces cutting temperature and cutting forces.
Subject
Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献