Performance analysis of rough surface hybrid thrust bearing with elliptical dimples

Author:

Kumar Vivek1ORCID,Sharma Satish C2

Affiliation:

1. Department of Mechanical Engineering, School of Technology, PDPU Gandhinagar, Gandhinagar, India

2. Tribology Laboratory, Department of Mechanical and Industrial Engineering, IIT Roorkee, Roorkee, India

Abstract

Surface roughness is inherent to all machining processes. Therefore, even a high precision machining process renders micro-roughness to some extent on the surface of conventional materials. The asperities height of many rough engineering surfaces follows Gaussian distribution. The surface roughness on the bearing surface may significantly affect the bearing performance. Surface texturing is emerging as a new technique to improve the tribological behavior of the mating surfaces. Usually dimensions/height of micro-roughness is of order of the depth of surface textures in fluid film bearings. Neglecting micro-roughness while numerically simulating a textured surface bearing may generate inaccurate bearing performance data. In presented work, finite element simulation of textured surface hybrid thrust bearings has been performed. Surface texture is provided over thrust pad in the form of regular arrays of elliptical dimples. A parametric optimization is carried out to determine optimum attributes of elliptical dimple (axis, depth, texture length and orientation) so that the load-carrying capacity and fluid film stiffness should be maximized and film frictional power losses should be minimized. Use of textured surface (with optimum elliptical dimple attributes) results into a significant enhancement in load-carrying capacity (91.3%), film stiffness coefficient (+98.8%) and reduction in frictional power losses (−48.3%). It is also observed that elliptical dimple and micro-roughness (transverse orientation) generate synergistic effects in further enhancing the load-carrying capacity (+101.4%) and film stiffness coefficient (+112%) of the bearing.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3