Performance Analysis of Textured Spherical Hybrid Journal Bearings Operated With Magnetorheological Fluid

Author:

Tomar Adesh Kumar1,Sharma Satish C.2,Sahu Krishnkant3

Affiliation:

1. Graphic Era (Deemed to be University) Department of Mechanical Engineering, , Dehradun, Uttarakhand 248002 , India

2. Indian Institute of Technology Tribology Laboratory, Department of Mechanical and Industrial Engineering, , Roorkee, Uttarakhand 247667 , India

3. Sharad Institute of Technology College of Engineering Mechatronics Engineering Department, , Yadrav, Ichalkaranji, Maharashtra 416121 , India

Abstract

Abstract Recently, textured surfaces have been used to enhance the performance of tribological systems. This paper examines the effect of textured surfaces on hole-entry spherical hybrid journal bearings operated using magnetorheological (MR) fluid. The different geometric shapes of textured surfaces, including spherical, rectangular, and conical, have been selected for numerical analysis. Next-generation design for tribological systems based on MR fluid lubrication emphasizes dynamic performance. MR fluid responds quickly, and its rheological characteristics can be simply adjusted. The present paper also deals with the non-Newtonian behavior of MR fluid on the bearing performance characteristics parameters. The finite element method is used to solve the modified Reynolds equation. The findings of numerical simulation show that the application of textured surfaces and MR fluid improves the values of minimum fluid film thickness and stability of the bearing.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3