Wear analysis of hip explants, dual mobility concept: Comparison of quantitative and qualitative analyses

Author:

Imbert L1,Geringer J12,Boyer B3,Farizon F3

Affiliation:

1. Ecole Nationale Supérieure des Mines, CIS-EMSE, CNRS UMR5146, Saint-Etienne, France

2. Penn State University, MSE/CEST, PA, USA

3. Centre d’Orthopédie Traumatologie CHU, Saint-Etienne, France

Abstract

Total hip replacement fails mainly because of wear. It is of interest to analyse wear to be able to increase the longevity of the hip implants. One way to achieve it is to use instruments on explants but the most suitable depends on the application. This article aims at comparing several methods of surface analysis in the particular application of wear determination in a series of dual mobility explants. Wear measurement could help understand the wear mechanism only partially known. A coordinate measuring machine is used to get three-dimensional points representing the explants, then Pro/Engineer® and Matlab® are used to calculate wear. A mechanical (SOMICRONIC®) and an optical profilometer (Bruker nanoscope Wyko® NT 9100, ex. Veeco) are used to access roughness parameters. The comparisons of the two software showed similar results for wear calculation except in a few cases where differences are due to the theoretical volumes calculation. The comparison of the two profiling techniques resulted in similar results particularly for Sa and Sdr. The comparison of the results showed that wear is present for four explants; it is relevant with the observed characteristics. The mechanical profilometer showed better accuracy than the optical one which enable to conclude that it must not be neglected for that particular application, even if measurements need more time.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3